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For unstable plants, the priority of control goes to the stability of synthesis, which means to find a stabilizer controller. In the
case where the plant is subjected to structured and unstructured uncertainties, the stability problem becomes more crucial. The
problem was solved by a conservative method based on generalized Kharitonov’s theorem and Nevanlinna-Pick’s interpolation
(NPI) technique. This paper introduces a proposed straightforward numerical approach for loop shaping the unstructured additive
or multiplicative maximum uncertainty magnitudes. The approach finds controllers, which are capable of stabilizing the interval
system while the uncertainty box is enlarged to its maximum dimensions. To illustrate, we introduce some numerical examples.

1. Introduction

Since most of the theories in control engineering are stat-
ed for linear plant modeling, one may wonder whether
such modeling is perfectly free from uncertainty. In fact,
uncertainty in linear plant models may have several origins.
Linearization or order reduction is not the only the reasons
but also the measurement errors and the deviation of the
operating point. Moreover, at high frequencies, both param-
eters and structure may change dramatically; uncertainty
may exceed 100% at some frequency. Despite the existences
of all details, one usually works with a simple law order
nominal model and quantities of uncertainty [1]. Since
the appearing of the surprisingly simple solution of robust
stability with respect to parameter uncertainty given by
Kharitonov [2], the initial results have been extended in
many directions. One of the earliest most important results is
the generalization developed by Chapellat and Bhattacharyya
[3]. The applications of the Kharitonov theory to the analysis
and synthesis of control systems have been introduced in
many literatures such as [4–8].

Uncertainty may be grouped as structured (parametric)
and unstructured. The former is formulated by bounding
each uncertain parameter p within some region [p−ε, p+ε],

while the latter is more difficult to quantify, and it appears
that the frequency domain is well suited for this class. This
leads to complex perturbations, which are usually normal-
ized such that the H∞ norm is less than one.

Additive and multiplicative perturbations are the two
classes of unstructured uncertainty usually considered in
control systems. In these classes, the G0(s) and G0(s) define
the nominal transfer function of the plant and the per-
turbed transfer function, respectively. The transfer function
G0(s) will be in the multiplicative class M(G0(s), r(s)), if
G0(s) has the same number of unstable poles as G0(s)
and G0(s) = (1 + δm(s))G0(s). The frequency-dependent
magnitude constraints are placed on δm(s) by a suitable real
rational minimum phase H∞ function r(s) such that for all
real frequencies w the inequality 0 < |δm( jw)| < |r( jw)|
hold. Similarly, the transfer function G0(s) will be in the
additive class A(G0(s), r(s)), where G0(s) = G0(s) + δm(s).

The necessary and sufficient conditions for robust sta-
bility in the M(G0(s), r(s)) and A(G0(s), r(s)) classes are,
respectively,

∥
∥
∥G0(s)C(s)(1 + G0(s)C(s))−1r(s)

∥
∥
∥∞ < 1,

∥
∥
∥C(s)(1 + G0(s)C(s))−1r(s)

∥
∥
∥∞ < 1.

(1)



2 Journal of Control Science and Engineering

In this paper, a proposed numerical method for loop
shaping the unstructured additive and multiplicative maxi-
mum uncertainty magnitudes is introduced. The considered
class of systems is assumed to have given parameter uncer-
tainties. The method is based on a rally use of both gen-
eralized Kharitonov’s theorem and the Nevanlinna-Pick in-
terpolation technique. The proposed method determines
a different structure controller that stabilizes the interval
system for the specific box of parameter uncertainty. The
algorithm continues finding these stabilizers while the uncer-
tainty box is enlarged to its maximum dimensions. The algo-
rithm is executed such that the increment in the number of
zeros and poles will be in its minimum value.

2. Controller Parameterization Based on
NPI Theory [9, 10]

The robustness conditions (1) can be rewritten as

‖G0(s)Q(s)r(s)‖∞ < 1,
‖Q(s)r(s)‖∞ < 1, (2)

where Q(s) is a proper function defined by

Q(s) = C(s)[1 + G0(s)C(s)]−1. (3)

Alternatively, the proper function C(s) is given by

C(s) = Q(s)[1−G0(s)Q(s)]−1. (4)

Thus, the search for a proper or strictly proper, ratio-
nal stabilizing controller C(s) is reduced to finding Q(s).
Therefore, one can parameterize all stabilizing controllers by
parameterizing all function Q(s). For unstable SISO systems,
the Nevanlinna-Pick interpolation theory [11] can be imple-
mented to determine the function Q(s) through finding a
strictly bounded real function u(s) (Schur function). The
function u(s) must satisfy the following interpolation and
norm conditions:

u(αi) = βi, Re(αi) > 0,
∣
∣βi
∣
∣ < 1, i = 1, 2, . . . , b

‖u(s)‖∞ < 1,
(5)

where αi are the RHS poles of the nominal plant, and βi are
the values given

βi = r(αi)
G0(αi)B(αi)

, (6)

where B(s) is a Blaschke product defined as

B(s) = (α1 − s) · · · (αb − s)
(α1 + s) · · · (αb + s)

. (7)

Finally, the required Q(s) is given by

Q(s) = B(s)u(s)
r(s)

. (8)

Additional interpolation conditions depend on the rela-
tive degree of r(s). For proper controller where the relative
degree of r(s) is one, the additional condition is u(∞) = 0,
while for strictly proper controller where the relative degree
of r(s) is greater than one additional conditions must be
incorporated.

3. Summary of Robust Stability Synthesis

In this section, a proposed approach to design a robust sta-
bilizer controller for a class of SISO plants under mixed un-
certainty is introduced [4]. The objective is to show that
the frequency domain uncertainty induced by parametric
uncertainty can be covered (loop shaped) by overbounding
with suitable bounding function r(s). NPI theory is applied
to obtain the Q(s) function, which parameterized all stable
controllers. Once this is accomplished, the obtained robust
controller, under the norm-bounded perturbation, success-
fully stabilizes the system subjected to mixed uncertainty.

Assume the nominal unstable plant and the perturbed
plant are defined, respectively as,

G0(s) = No(s)
Do(s)

,

G0(s) = no0 + no1s + no2s
2 + · · · + nops

p

do0 + do1s + do2s2 + · · · + doqs
q ,

(9)

where N and D are fixed polynomials. The perturbation
about the nominal mode is parameterized by ε as it is defined
by the expressions (10):

ni ∈
[

noi − ε,noi + ε
]

; i = 1, 2, . . . , p,

dj ∈
[

doj − ε,doj + ε
]

; j = 1, 2, . . . , q; q ≥ p.
(10)

For each value of ε, a family of interval system G(s, ε) and
its associated set of Kharitonov’s systems GK (s,ε) can then be
invoked. Therefore, an upper bound εmax is easily found by
letting ε be the smallest number such that the interval family
(11) contains an unstable polynomial:
{

D(s) = do + · · · + dqs
q
}

: dj ∈
[

doj − ε1,doj + ε1

]

. (11)

In other words, since it is assumed that the number of
unstable poles in the plant should remain unchanged, the
maximum allowable value of the parameter change in the
plant model is found. It is then required that ε be less than
some εmax such that the entire family of plants is stable. This
value of εmax can then be found by checking the Hurwitz
stability of the denominator Kharitonov’s polynomials in the
Kharitonov system:

GK (s) :=
{

Ki
N

K
j
D

: i, j ∈ {1, 2, 3, 4}
}

. (12)

Once εmax is determined, a stabilizer controller can be
synthesized for any ε ≤ εmax. This can be done by defining
the extremal segments of G(s), say,

GE(ε, s) :=
{

Ki
N (ε, s)

S
j
D(ε, s)

;
SiN (ε, s)

K
j
D(ε, s)

: i, j ∈ {1, 2, 3, 4}
}

. (13)

Next, the boundary function r(s), which bounds the freq-
uency domain uncertainty induced by the parametric uncer-
tainty at each frequency, is determined. This is accomplished
by calculating the maximum magnitude of the extremal
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segments of the plant. There, the difference between the
extremal set and the nominal model set will represent the
maximum additive unstructured perturbation magnitude,
δ(ω), at each frequency:

∣
∣G
(

ε, jw
)−G◦

(

jw
)∣
∣ = ∣∣ΔG(ε, jw)∣∣ = δ(w). (14)

The multiplicative unstructured uncertainty can be
defined as

∣
∣Go

(

ε, jw
)−G◦

(

jw
)∣
∣

G◦
(

jw
) = ∣∣ΔG(ε, jw)∣∣ = δ(w). (15)

Hence the maximum perturbation δ(ε,ω) induced at each
frequency is

δ(ε,w) = max
G∈Gε

{∣
∣ΔG

(

ε, jw
)∣
∣
}

. (16)

Since it is required that the function r(s) should be stable,
proper (or strictly proper), real, rational, and minimum
phase, then the maximum perturbation should satisfy

δ(ε,w) = max
G∈Gε

{∣
∣ΔG

(

ε, jw
)∣
∣
}

<
∣
∣r
(

jw
)∣
∣,

that is,
∣
∣r
(

jw
)∣
∣ > δ(ε,w), w ∈ IR,

or
∣
∣ΔG

(

ε, jw
)∣
∣ <

∣
∣r
(

jw
)∣
∣, w ∈ IR.

(17)

The main important problem is the choice of r(s) func-
tion, which has the following features: r(s) should be stable,
proper (or strictly proper), real, rational, and minimum
phase:

(i) |r( jw)| > δ(ε,w),w ∈ IR and for any ε;

(ii) r(s) should satisfy the NPI conditions such as |β| <
1,‖u(s)‖∞ < 1;

(iii) r(s) should not cause any pole-zero cancellations bet-
ween the model and the controller.

To illustrate, let us first consider a system of one unstable
pole s = α. In this case, the NPI theory will hold for some
ε ≤ εmax, and there will be one interpolation condition given
by

β = r(α)

G0(α)(α− s)(α + s)−1 . (18)

In this case, it is sufficient to let r(s) be equal to a constant
value r = δ(w). To complete the design, a relationship
between the unstructured uncertainty δ(w) and parametric
uncertainty values has to be determined over the range of fre-
quency of interest. This can be performed by generating the
extremal segments and searching for the largest perturbation
at each frequency. Then the obtained δ(w)−ε graph serves for
specifying the constant, r, corresponding to a specified value
of ε. Based on the NPI theorem, the Schur function u(s), the
Q(s), and the stabilized controller C(s) can be found. How-
ever, when a large amount of parametric uncertainty has to
be tolerated for the same value of r, the NPI constraints may
be no longer satisfied. In [4] it is recommended to take the
frequency information into account and attempt to design
rational function r(s) that loop-shaped the function δ(ε,w).

ΔG (ε1, jw)

w

M
ag

n
it

u
de

|r( jw)|

δ0

Figure 1: Definition of the norm distance δ0.

4. Proposed Approach for
Mixed Uncertainty Loop Shaping

As mentioned earlier, when it is required to tolerate larger
value of parameter variation, the frequency response of the
maximum unstructured uncertainty can be used to generate
the r(s) function, which in turn can be used through the NPI
algorithm to construct a stabilizer controller. Only in simple
cases, such a loop shaping can be performed by certain adhoc
procedure. However, when the system has many unstable
poles, such an adhoc procedure cannot be performed easily.
Moreover, the problem becomes more complicated because
the function r(s) should itself satisfy specific properties and
should be suitable for implementing the NPI technique.

For specific value say ε1, a parameter δ0 is defined as a
norm distance between the maximum magnitude curve of
the unstructured uncertainty ΔG(ε1, jw) and the magnitude
curve of r(s) function |r( jw)|, as shown in Figure 1.

Hence, the inequality (13) can be transformed to equality
written as

∣
∣r
(

jw
)∣
∣ = max

{∣
∣ΔG

(

ε, jω
)∣
∣
}

+ δ0; w ∈ R,
[

0,wf

]

,

(19)

where wf is the maximum considered frequency.
Since the maximum magnitude of the unstructured

uncertainty is known over the whole frequency range, then
for specific value of δ0, the magnitude of the r(s) function is
calculated. Let us denote this magnitude by z, and so we write

z2 = ∣∣r( jw)∣∣2 = [max
{∣
∣ΔG

(

ε1, jω
)∣
∣
}

+ δ0
]2
. (20)

A general proper rational structure of r(s) can be put in
the form:

r(s) =
∏n

i=1(ais + bi)
∏m

i=1(s + ci)
, n ≤ m, (21)
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where ai, bi, and ci are real (can pose also complex values
provided that r(s) remains rational) unknown parameters; n
and m are assumed orders. Thus,

∣
∣r
(

jw
)∣
∣ =

∏n
i=1

√

ai2w2 + bi
2

∏m
i=1

√

w2 + ci2
,

or z2
m
∏

i = 1

(

w2 + ci
2) =

n
∏

i = 1

(

ai
2w2 + bi

2
)

.

(22)

Equation (22) can be written in the form:
(

A1w
2n + A2w

2n−2 + · · · + Anw
2 + An+1

)

− (B1w
2m−2 + B2w

2m−4 + · · · + Bm−1w
2 + Bm

)

z2

= z2w2m,
(23)

where the coefficients A’s and B’s are related to the r(s)
parameters through the following two quadratic functions:

Ak = fk
(

a2
1, a2

2, . . . , a2
n, b2

1, b2
2, . . . , b2

n

)

, k = 1, . . . ,n + 1,

Bj = gj
(

c2
1, c2

2, . . . , c2
m

)

, j = 1, . . . ,m.
(24)

Obviously, these two quadratic functions can be assigned
exactly for specific orders n and m. A necessary condition
for the required loop shaping is that (23) should be valid for
each frequency in the range [0,wf ]. Although it is sufficient
to divide the frequency range to (m + n + 1) points to solve
linearly for A’s and B’s coefficients, but such a small number
of points will not certainly ensure the r(s) bounding of
the maximum unstructured uncertainty curve, especially in
between these points. Therefore, a sufficiently high number
of points (may be equal or greater than ten-time wf ) should
be taken. Let l � (m + n + 1) be such a number, then an
overdetermined linear system is obtained as

[

X1 · · · Xn Xn+1 Xn+2 · · · Xn+m+1

]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1

A2

...

An+1

B1

...

Bm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Y ,

(25)

where the column vectors Xi and Y are of order l and are
calculated from

Xi =
[

w2(n−i+1)
1 · · ·w2(n−i+1)

l

]T
, i = 1, 2, . . . ,n,

Xn+1 = [1 1 · · · , 1]T ,

Xn+1+h =
[

w2(m−h)
1 · · ·w2(m−h)

l

]T
, h = 1, 2, . . . ,m,

Y =
[

z2
1w

2m
1 · · · z2

l w
2m
l

]T
,

(26)

where wi and zi; i = 1, 2, . . . , l are the values of the selective
frequencies and the corresponding magnitudes, respectively.

The least mean square linear regression is then used
to obtain the values of the coefficients A’s and B’s. The
parameters of the r(s) function can be now calculated by
reassignment of the nonlinear functions stated in (23);
numerical methods may be required. The strictly proper
minimum phase stable function r(s) has the following
rational form:

r(s) =
∑n

i = 0 αi+1sn−i
∑m

j = 0 αn+ j+2sm− j , (27)

where αi, i = 1, 2, . . ., m + n + 1 are the required parameters.
With such reassignment, no loss of generality takes place, but
a simplification of algebraic manipulation is rather gained.
In the next sections, two considered cases will be shown for
illustrating the proposed approach.

From mathematical point of view, the solution vector
[Ai Bi] can possess positive real or positive-negative real val-
ues (at least one coefficient is negative). This, consequently,
causes complex parameters to appear in r(s), and so the
rationality property is not satisfied. Moreover, even with
positive real parameters (to have stable minimum phase
r(s)), the NPI algorithm may not work due to the failure of
satisfying the condition βi < 1, which related causally to αi
parameters.

To release the solution from such cases, the solution is
parameterized by the norm distance δ0. A small value of
δ0 may cause either complex parameters to appear or non-
complete bounding. On the other hand, large values may
cause the failure of the NPI conditions. Therefore, a search
for a suitable value must be performed. A bisection searching
can be carried out in the range 0 < δ0 < δmax, where δmax is
any large value, which causes the NPI algorithm failure. If no
such δ0 exists, one can conclude that the assumed r(s) struc-
ture is not correctly chosen with respect to the structured
uncertainty parameter ε1. However, this in turn completes
the procedure to find a stabilizer controller while enlarging
the box of parameter uncertainty up to its maximum. For
example, for ε1 ≤ ε ≤ ε2, if one zero-two poles r(s) is a
workable structure, then a structure of two zeros-three poles
is workable with ε2 ≤ ε ≤ ε3, where ε3 > ε2. Obviously, this
enlargement is at the expense of a higher-order controller.

An iterative bisection algorithm can carry out the
proposed approach of determining r(s). The magnitude z is
either increased or decreased by a magnitude Δz, depending
on satisfying both the interpolation and other NPI condi-
tions or on the closest bounding, respectively. Furthermore,
the algorithm checks the necessary conditions that r(s)
function is a rational, minimum phase, and stable. When
neither increasing nor decreasing Δz solves the problem,
then the assumed structure of r(s) is unsuitable to loop-
shaping the maximum perturbation curve of the required
parametric uncertainty ε1. The assumed structure should be
further upgraded as necessary. The numerical solution of the
nonlinear functions (23) is completed in each iteration.
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5. Numerical Examples and Simulation

Let us first illustrate the proposed approach for loop shaping,
that is, finding the r(s) structure for two cases as follows.

(1) Assume that the r(s) is a one zero-two pole of the
form

r(s) = α1s + α2

s2 + α3s + α4
, n = 1, m = 2. (28)

Then the coefficient vector is assigned to the r(s) parameters
as follows:

[

A1 A2 B1 B2

]

=
[

α2
1 α2

2 α2
3 − 2α4 α2

4

]

. (29)

Hence, it easy to compute the r(s) parameters as

α1 =
√

A1, α2 =
√

A2,

α3 =
√

B1 + 2
√

B2, α4 =
√

B2,
(30)

which should be all real.
(2) Assume that the r(s) is two zeros-three poles of the

form

r(s) = α1s2 + α2s + α3

s3 + α4s2 + α5s + α6
; n = 2, m = 3 (31)

In this case, (23) has the form:

A1w
4 + A2w

2 + A3 −
[

B1w
4 + B2w

2 + B3
]

z2 = z2w6.
(32)

The r(s) parameters are related to the linear regression
coefficients as follows:

α1 =
√

A1, α2 =
√

A2 + 2
√

A1A3,

α3 =
√

A3, α4 =
√

B1 + 2α5,

α5 =
√

B2 + 2α4

√

B3, α6 =
√

B3.

(33)

Note that the coefficients, α4 and α5, are coupled in the
equations. Therefore, to solve, a numerical method has to be
utilized.

Consider the unstable plant defined by a nominal transfer
function [12]:

G0(s) = b1s + b0

s3 + a2s2 + a1s + a0

= 30s + 10
s3 − 3.52s2 − 3.59s + 14.9

.

(34)

The poles are {−2, 2.35, 3.17}, that is, two unstable
poles. The plant is subjected to parameter variations as
follows:

b1 ∈ [30, 30], b0 ∈ [10− ε, 10 + ε],

a2 ∈ [−3.52− ε,−3.52 + ε],

a1 ∈ [−3.59− ε,−3.95 + ε],

a0 ∈ [14.9− ε, 14.9 + ε].

(35)

(I) Multiplicative Uncertainty. To start the proposed ap-
proach, it is required first to evaluate the maximum struc-
tured uncertainty, εmax, such that there is no change in the
number of unstable poles (εmax = 6.5 is found). To illustrate
the loop-shaping approach details, a parameter uncertainty
value of ε1 = 1 < εmax is selected. Since the constant value
case of r(s) limits seriously the enlargement of ε1, we exclude
it here.

For this example, the extremal segments joining both
Kharitonov’s vertices and segments for numerator and
denominator are

Kn1 = b1s + (b0 − ε1),

Kn2 = Kn1 ,

Kn3 = b1s + (b0 + ε1),

Kn4 = Kn3 ,

Kd1 = s3 + (a2 + ε1)s2 + (a1 − ε1)s + (a0 − ε1),

Kd2 = s3 + (a2 + ε1)s2 + (a1 + ε1)s + (a0 − ε1),

Kd3 = s3 + (a2 − ε1)s2 + (a1 − ε1)s + (a0 + ε1),

Kd4 = s3 + (a2 − ε1)s2 + (a1 + ε1)s + (a0 + ε1),

Sn = (1− λ)Kn2 + λKn3 ,

Sd1 = (1− λ)Kd2 + λKd1 ,

Sd2 = (1− λ)Kd1 + λKd3 ,

Sd3 = (1− λ)Kd2 + λKd4 ,

Sd4 = (1− λ)Kd3 + λKd4 , 0 < λ < 1.

(36)

Therefore, in this example, we have to consider only 12
(out of the theoretical 32 plants) extremal plants defined as

gj = Kn1

Sdj

, j = 1, 2, 3, 4,

gj+4 = Kn3

Sdj

, j = 1, 2, 3, 4,

gj+8 = Sn
Kdj

, j = 1, 2, 3, 4.

(37)

The unstructured uncertainty, ΔG(ε1, jw), magnitudes of
the interval system are computed from

∣
∣ΔG

(

ε1, jw
)∣
∣ =

∣
∣
∣
∣
∣

gi
(

ε1, jw
)−G0

(

jw
)

G0
(

jw
)

∣
∣
∣
∣
∣

, i = 1, 2, . . . , 12.

(38)

The proposed approach of shaping the unstructured
uncertainty is performed for assumed one zero-two poles
r(s) function. The result is a strictly proper stable function:

r(s) = 1.382s + 1.8795
s2 + 5.93s + 10.47.

(39)
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Figure 2: Magnitude of r( jw) and the maximum magnitude of
ΔG(ε1, jw).

Figure 2 shows the plot of the magnitude of both r( jw)
and the maximum magnitude of ΔG(ε1, jw). Finally, the NPI
algorithm is applied (consisting of three interpolation condi-
tions ({α1 = 2.35, α2 = 3.17, α3 = ∞}, {β1 = 0.2404, β2 =
0.2743, β3 = 0}) to obtain the Schur function. The result is

u(s) = 4.874s− 3.876
s2 + 7.498s + 8.398

, (40)

which satisfies also the norm condition: ‖u(s)‖∞ = 0.6795 <
1.

The stabilizer controller is

C(s) = 3.526s4 + 25.161s3 + 56.509s2 + 11.226s− 58.721
s4 + 11.893s3 + 47.996s2 + 75.113s + 22.718

.

(41)

To verify that the controller C(s) stabilizes the interval
plant with ε = ε1 = 1, Kharitonov’s templates are
plotted in Figure 3. As seen the origin is excluded, which
indicates that the controller stabilizes the plant irrespective of
structure uncertainty as well as multiplicative unstructured
uncertainty.

Up to the value, ε1 = 2.2, the assumed r(s) structure,
but obviously, with different parameters, gives the strictly
proper bounded real Schur’s function u(s) whose norm is
less than one, and, consequently, the corresponding stabilizer
controller.

A summary of the results for ε1 = 2.2 is

r(s) = 2.977s + 3.563
s2 + 4.58s + 8.197

,

‖u(s)‖∞ = 0.9974,

C(s) = 41.93s4 + 252.55s3 + 547.22s2 + 282.6s− 382
s4 + 1397s3 + 700.4s2 + 1432s + 455.5

.

(42)
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Figure 3: Kharitonov’s templates with ε1 = 1.

Greater value of ε1 requires considering upgrading (in the
sense of increasing the number of zeros and poles) the r(s)
structure. For instant, for ε1 = 2.5, it is found that the r(s)
structure of two zeros-three poles should be adopted. It has
the form:

r(s) = 2.786
(

s2 + 1.593s + 1.303
)

(s + 1.364)(s2 + 3.208s + 5.3)
. (43)

The stabilizer controller becomes of fifth order:

C(s) = 30.9s5 + 186.2s4 + 471s3 + 504.7s2 − 0.223s− 243.14
s5 + 102.1s4 + 494.1s3 + 1174.4s2 + 1149.4s + 286.4.

(44)

The Kharitonov templates are shown in Figure 4. Clearly,
even when the structure uncertainty, value is increased to
2.5 with multiplicative unstructured uncertainty, the interval
system is stable over the completely considered range of
frequency.

Confirmation of the stabilized closed-loop system is
illustrated also in the step responses of the nominal and
interval systems (of 32 plants) as in Figure 5. It can be noted
that even for highly overshoot interval system members the
stability is secured.

If it is still required to tolerate larger value of ε1, then
further upgrading of r(s) structure should be assumed.
However, it will be on the expense of increasing the controller
order.

(II) Additive Uncertainty. In this case, the only difference
from what we did above is the computation of the unstruc-
tured uncertainty ΔG(ε1, jw) magnitudes for the interval
system. It is computed from:

∣
∣ΔG

(

ε1, jw
)∣
∣ = ∣∣gi

(

ε1, jw
)−G0

(

jw
)∣
∣, i = 1, 2, . . . , 12.

(45)
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Figure 4: Kharitonov’s templates with ε1 = 2.5.
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Figure 5: Step response of the stabilized interval system.

For ε1 = 3.3, the results are

r(s) = 0.572(s + 19.4)(s + 5.5)(s + 0.464)
(s2 + 2.32s + 4.847)(s2 + 5s + 11.93)

,

u(s) = 28.75s + 0.6377
s2 + 29.28s + 7.477

,

‖u(s)‖∞ = 0.983,

C(s) = 50.23(s + 2)(s + 0.0222)
(s + 65.29)(s + 0.321)(s2 − 2.68s + 4.847)

×
(

s2 + 2.32s + 4.85
)(

s2 + 5s + 11.93
)

(s2 + 4.748s + 9.599)
.

(46)
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Figure 6: Additive uncertainty case with ε1 = 3.3.
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Figure 7: Kharitonov’s templates with ε1 = 3.3 with additive
uncertainty.

Figures 6 and 7 are the corresponding results. Clearly, the
interval system is stable with respect to the parametric (struc-
tured) uncertainty of ε1 = 3.3 and the additive unstructured
uncertainty. It is worth mentioning that, for a specific value
of ε1 as the infinity norm of the function u(s) approaches 1,
the coverage of assumed r(s) structure reaches its end.

6. Conclusions

A robust stabilization synthesis for systems under mixed
structured (parameters) and unstructured multiplicative or
additive uncertainties is considered. The implementation
of Kharitonov’s theory and the maximum perturbation
of the unstructured uncertainty with respect to the range



8 Journal of Control Science and Engineering

of frequency of interest propose an approach for manip-
ulating these mixed uncertainties. The NPI theorem is
used to parameterize all stabilized controllers. A numerical
straightforward approach for bounding (loop shaping) the
unstructured uncertainty by a proper stable function is
proposed to enlarge the box of parametric uncertainty in
tandem with either multiplicative or additive uncertainty.
The results show that it is always possible to enlarge the box
on the expense of increasing the controller order.
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