Chapter 54:

Motor Functions of the Spinal Cord

The Spinal Cord is More Than Just a Conduit for Nerve Fibers

- Neuronal circuits for walking and various reflexes are contained within the spinal cord.
- Higher brain centers activate and command these circuits.
 - walking
 - maintaining equilibrium

Motor Organization of the Spinal Cord

- Sensory fibers enter the cord and are transmitted to higher centers, or they synapse locally to elicit motor reflexes.
- Motor neurons are located in the anterior portion of the cord.
 - motor neurons are 50 100 % bigger than other neurons

Anterior Motor Neurons

Alpha motor neurons

- give rise to large type A alpha fibers (~14 microns).
- stimulation can excite 3 100 extrafusal
 muscle fibers collectively called a motor unit

Gamma motor neurons

- give rise to smaller type A gamma fibers (~5 microns)
- stimulation excites *intrafusal fibers*, a special type of sensory receptor

Interneurons and Propriospinal Fibers

Interneurons

- 30 times as many as anterior motor neurons
- small and very excitable
- comprise the neural circuitry for the motor reflexes

Propriospinal fibers

- travel up and down the cord for 1 2 segments
- provide pathways for multisegmental reflexes

Sensory Receptors of the Muscle

- Muscle Spindle
 - sense muscle length and change in length
- Golgi Tendon Organ
 - sense tendon tension and change in tension

The Muscle Spindle

Static Response of the Muscle Spindle

- When the center of spindle is stretched slowly - the number of impulses generated by the primary and secondary endings increases in proportion to the degree of stretch.
- This is the 'static response'.
- Function of the static nuclear bag and nuclear chain fibers.

Dynamic Response of the Muscle Spindle

- When the center of the spindle is stretched rapidly - the number of impulses generated by the primary endings increases in proportion to the rate of change of the length.
- This is the 'dynamic response'.
- Function of the dynamic nuclear bag fiber.

Physiologic Function of the Muscle Spindle

- Comparator of length between the intrafusal and extrafusal muscle fiber.
- Opposes a change in length of the muscle.
- When the muscle is stretched the spindle returns it to its original length.
- Leads to the stretch reflex.

Muscle Spindle Animation

Function of the Gamma System

- Spindle is normally tonically active as a result of input from higher brain centers.
- Controls the intensity of the stretch reflex.
- Performs a damping function by adjusting sensitivity.

Control of the Gamma Motor System (Fusimotor System)

- Gamma signal excited by the bulboreticular facilatory area of the brain stem.
- Secondarily by areas that send impulses to this area.
 - cerebellum, basal ganglia, cortex
- Little is known about the precise control of this system.

Clinical Application of the Stretch Reflex

- Knee jerk reflex
 - striking the patellar tendon with a hammer stretches the quadriceps muscle.
 - this initiates a stretch reflex which shortens the muscle and causes the knee to move forward.
- Can be done with almost any muscle.
- Index of the facilitation of the gamma efferents.
- Cortical lesions usually increase muscle stretch reflexes.

Golgi Tendon Reflex

- Mediated by the golgi tendon organ receptor located in the tendon.
- This receptor responds to tension.
- When the tension becomes too great the reflex inhibits the motor fibers attached to the tendon.
- Function is to equalize force among muscle fibers.

Transmission of Stretch Information to Higher Centers

- Muscle spindle and golgi tendon signals are transmitted to higher centers.
- This informs the brain of the tension and stretch of the muscle.
- Information is transmitted at 120 m/sec.
- Important for feedback control of motor activity.

The Withdrawal Reflexes

- A painful stimulus causes the limb to automatically withdraw from the stimulus.
- Neural pathways for reflex:
 - nociceptor activation transmitted to the spinal cord
 - synapses with pool of interneurons that diverge the to the muscles for withdrawal, inhibit antagonist muscles, and activate reverberating circuits to prolong muscle contraction
 - duration of the afterdischarge depends on strength of the stimulus

Crossed Extensor Reflex

- Painful stimulus elicits a flexor reflex in affected limb and an extensor reflex in the opposite limb.
- Extensor reflex begins 0.2 0.5 seconds after the painful stimulus.
- Serves to push body away from the stimulus, also to shift weight to the opposite limb.

Neuronal Circuits
for Withdrawal
and Crossed
Extensor Reflex

The Stretch Reflex

Other Reflexes for Posture and Locomotion

- Pressure on the bottom of the feet cause extensor reflex.
 - more complex than flexor-crossed extensor reflex
- Basic walking reflexes reside in the spinal cord.

Reflexes that Cause Muscle Spasm

- Pain signals can cause reflex activation and spasm of local muscles.
- Inflammation of peritoneum can cause abdominal muscle spasm.
- Muscle cramps caused by painful stimulus in muscle:
 - can be due to cold, ischemia, of overactivity
 - reflex contraction increases painful stimulus and causes more muscle contraction